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Abstract. Oscillation criteria for all solutions of the first order delay difference
equation of the form

Tl — Tn +PrZn-k =0, n=0,1,2,..,

where {p, } is a sequence of nonnegative real numbers and k is a positive integer
are established especially in the case that the well-known oscillation conditions
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are not satisfied. Our results essentially improve known results in the literature.
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1. INTRODUCTION

In the last few decades the oscillation theory of delay differential equa-
tions has been extensively developed. The oscillation theory of discrete
analogues of delay differential equations has also attracted growing atten-
tion in the recent few years. The reader is referred to [1-16, 18-32] and the
references cited therein. In particular, the problem of establishing sufficient
conditions for the oscillation of all solutions of the delay difference equation

Azp + ppTar=0, n=0,1,2,.., (1.1)

where {p,} is a sequence of nonnegative real numbers, k is a positive integer,
and A denotes the forward difference operator Az, = Zn+1 — Zn, has been



the subject of many recent investigations. See, for example, [2-9, 12-16,
18-27, 29-32] and the references cited therein. Strong interest in Eq. (1.1)
is motivated by the fact that it represents a discrete analogue of the delay
differential equation (see [18] and the references cited therein)

2'(t) + p(t)z(t —7) =0, p(t) =20, 7>0. (1:2)

By a solution of (1.1) we mean a sequence {z,} which is defined for
n > —k and which satisfies (1.1) for n > 0. A solution {z,} of (1.1) is said
to be oscillatory if the terms z,, of the solution are not eventually positive
or eventually negative. Otherwise the solution is called nonoscillatory.

For convenience, we will assume that inequalities about values of se-
quences are satisfled eventually for all large n.

In this paper, our main purpose is to derive new oscillation conditions for
all solutions to Eq. (1.1), especially in the case that the known oscillation
conditions (see below)
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are not satisfied.

2. OSCILLATION CRITERIA FOR EQ. (1.1)

In 1981, Domshlak [3] was the first who studied this problem in the case
where k = 1. Then, in 1989 Erbe and Zhang [9] established the following
oscillation criteria for Eq. (1.1).

Theorem 2.1.([9]) Assume that

B :=liminfp, >0 and limsupp, >1—-74 (C1)
n—00
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Then all solutions of Eg. (1.1) oscillate.
Theorem 2.2.([9]) Assume that
kk

lim inf p,, >

minfpn > Gyee (C2)

Then all solutions of Eq. (1.1) oscillate.



Theorem 2.3.([9]) Assume that

A = limsup Z pi>1 (Cs)
T i—n—k

Then all solutions of (1.1) oscillate.

In the same year 1989 Ladas, Philos and Sficas [13] proved the following

theorem.
Theorem 2.4.([13]) Assume that
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Then all solutions of Eq. (1.1) oscillate.

Therefore they improved the condition (Cs) by replacing the p, of (C2)
by the arithmetic mean of the terms p,—g, ..., pPn—1 in (Cs).

Concerning the constant =7 in (C2) and (Cy) it should be empasized
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that, as it is shown in [9), if

kk
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then Eq. (1.1) has a nonoscillatory solution.

In 1990, Ladas [12] conjectured that Eq. (1.1) has a nonoscillatory so-

lution if
k
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holds eventually. However this conjecture is not true and a counterexample
was given in 1994 by Yu, Zhang and Wang [30].

It is interesting to establish sufficient conditions for the oscillation of all
solutions of (1.1) when (Cj3) and (C4) are not satisfied. (For Eq. (1.2), this
question has been investigated by many authors, see, for example, [17] and
the references cited therein).

In 1993, Yu, Zhang and Qian [29] and Lalli and Zhang [14], trying to im-
prove (C3), established the following (false) sufficient oscillation conditions
for Eq. (1.1)
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and
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respectively.

Unfortunately, the above conditions (F}) and (F3) are not correct. This
is due to the fact that they are based on the following (false) discrete version
of Koplatadze-Chanturija Lemma [12]. (See (6] and [2]).

Lemma A (False). Assume that {zn} is an eventually positive solution o f
Eq. (1.1) and that

k3

Z pi > M >0 for large n. (1.3)
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As one can see, the erroneous proof of Lemma A is based on the following
(false) statement. (See [6] and [2]).
Statement A (False). If (1.3) holds, then for any large N, there exists a
positive integer n such thatn —k < N <n and
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It is obvious that all the oscillation results which have made use of the
above Lemma A or Statement A are not correct. For details on this problem
see the paper by Cheng and Zhang [2].

Here it should be pointed out that the following statement (see [13], [20])
is correct and it should not be confused with the Statement A.
Statement 2.1. ([13], [20]) If

n—1

Z pi>M >0 for large n, (1.4)
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then for any large n, there exists a positive integer n* withn —k <n* <n

such that .
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In 1995, Stavroulakis [20], based on this correct Statement 2.1, proved
the following theorem.

Theorem 2.5.([20]) Assume that
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Then all solutions of Eq. (1.1) oscillate.

In 1998, Domshlak [5], studied the oscillation of all solutions and the
existence of nonoscillatory solution of Eq. (1.1) with r -periodic positive
coefficients {pn}, Pntr = Pn. It is very important that in the following cases
where {r = k},{r=k+1},{r=2},{k=1,r =3} and {k = 1,7 = 4} the
results obtained are stated in terms of necessary and sufficient conditions
and it is very easy to check them.

and

Following this historical (and chronological) review we also mention that
in the case where
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the oscillation of (1.1) has been studied in 1994 by Domshlak [4] and in 1998
by Tang [21] (see also Tang and Yu [23]). In a case when p, is asymptoti-
cally close to one of the periodic critical states, unimprovable results about
oscillation preperties of the equation

Tntl — Tn + PnZn—1 = 0

were obtained by Domshlak in 1999 [7] and in 2000 (8].

In 1999, Domshlak [6] and in 2000 Cheng and Zhang [2] established the
- following letnmas, respectively, which may be looked upon as (exact) discrete
versions of Koplatadze-Chanturia Lemma.

Lemma 2.1. ([6]) Assume that {x,} is an eventually positive solution of
FEq. (1.1) and that
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Then
2

M
Ty > —; Tn—k for large n. (1.5)

Lemma 2.2. ([2]) Assume that {z,} is an eventually positive solution of
Eq. (1.1) and that

n—1
Z pi>M >0 for large n. (1.4)
i=n—k
Then
Tn > MFz,_p  for large n. (1.6)

In 2004, Stavroulakis [21], based on the above two lemmas, established
the following theorem.

Theorem 2.6. Assume that
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Then either one of the conditions
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implies that all solutions of Eq. (1.1) oscillate.

Remark 2.1. From the above theorem it is now clear that
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is the correct oscillation condition by which the (false) condition (F) should
be replaced.

In the following lemma (cf. [6]) we establish an improvement for the
upper bound for f—‘;—:—" Then using this (improved) upper bound we derive
a condition which essentially improves the conditions (Cg) and (C7).



Lemma 2.3. Assume that {z,} is an eventually positive solution of Eq.
(1.1) and that

n—1
Z pi > M >0 for large n. (1.4)
i=n—k
Then
M2
Tn > Mxnfk for large n. (1.7)

Proof. Since {x,} is an eventually positive solution of Eq. (1.1), then
eventually

ALp = Tpp1 — Tn < —PrTp—k <0,
and so {z.} is an eventually nonincreasing sequence of positive numbers.
For all n consider the following two possible cases: (i) pn > % , and (%)
Pn < %
In the case (i), from Eq. (1.1), it is clear that

M
Tn = Tptl + DnZn—k = Tntl + 733714.’:-

Also, summing up Eq. (1.1) from n — k& to n — 1, and using the fact that
the sequence {z,} is nonincreasing, we have
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From the last two inequalities we obtain
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which implies that
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Therefore
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Moreover summing up Eq. (1.1) first from » to n* and then from n* —k
to n—1, and using the fact that the sequence {z,} is nonincreasing, we have
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that is,
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Combining the last two inequalities, we obtain
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that is,
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The proof is complete.

Theorem 2.7. Assume that
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Then all solutions of Eg. (1.1) oscillate.

Proof. Assume, for the sake of contadiction, that {z} is an eventually
positive solution of Eq. (1.1). Then eventually

Az, = Tn+l — Tn L —DPnTn—k < 0,

and so {z,} is an eventually nonincreasing sequence of positive numbers.
Summing up Eq. (1.1) from n — k to n — 1, we have

n—1

Tn — Tp—k+ Z Pi%i—k = 0,

i=n—k

and, because {z,} is eventually nonincreasing, it follows that for all suffi-

ciently large n
n—1
Tp — Tn—k + ( Z Pi) Tn—k <0,

i=n—k

Tr—k ( kaw 1) <0.

Now, using Lemma 2.3, for all sufficiently large n, we have
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which, in view of (Cg), leads to a contradiction. The proof is complete.

Remark 2.2. Observe the following:

(i) When o — 0, then it is clear that the conditions (Cs), (C7) and
(Cs) reduce to

n—1
A :=limsup Z p; > 1,
5 Tt i=n—k
which obviously immplies (Cs). .
(ii) It always holds
o’ a?
C—a) 4

sinca & > 0 and therefore condition (Cg) always implies (Cg)-



(1ii) When k = 1,2
i < aF
2(2 — ) '
(since, from the above mentioned conditions, it makes sense to investigate

k+1
the case when a < ('EI!;C-’T) ) and therefore condition (Cg) implies (C7).

(iv) When k = 3,

2
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So in this case the conditions (Cs) and (C7) are independent.

(v) When k& > 4
2

st
2(2 — a) ’
and therefore condition (C7) implies (Cyg).

(vi) When & > 10 condition (Cs) may hold but condition (C3) may not
hold.

(vii) When k is large then & — 1 and ih this case both conditions
(Cg) and (Cy) imply (Cs). For illustartive purposes, we give the values of
the lower bound of A under these conditions when k = 100 (o =~ 0.366) :

(Cr) : 0.999999
(Cs) : 0.966511
(Cs) : 0.959009

We see that our condition (Cg) essentially improve the conditions (Cs)
and (Cr).
We illustrate these by the following examples.

Example 2.1. Consider the equation

$n+1—zn+pn$n—3 =OJ 71.:0,1,2,...,

10



where

1 1_ 6781 _ ,nr
i T & = 1112;--'1
00 P =gt oo 50 =0

Here k = 3 and it is easy to see that

s 5 {3\
a—hnrigf Z D= — 0 < (Z) ~ 0.3164

i=n—3

Pan =

and

6731
I == >1-a®=0973.

e ;_ Pi=15 " 10000 7T T
Thus condition (C7) is satisfied and therefore all solutions oscillate. Observe,
however, that condition (Cg) is not satisfied.

If, on the other hand, in the above equation
3 744 L2 0

o . F e n=20,1,2
DPan = 100! Pan+l = 00 1000 2 3 = Uy by &y
then it is easy to see that
n—1 4
24 3
& = lhggfz_gnhspl 100 < ( ) ~(.3164
and
744 o?
li E ;= — >1————~0. :
T * 000~ T ooy = 0980

In this case condition (Ca) is satisfied and therefore all solutions oscillate.
Observe, however, that condition (C7) is not satisfied.
Example 2.2, Consider the equation

. In+l — Tn ‘{"pnxn—lO:O, n=0,1,2,...,

where

35 _ 35, 613
1000’ P11 = 7600 T 1000°

Here k& = 10 and it is easy to see that

Plint+l = -« = Pllnt10 = = 0;1,2;.....

n—1 11
35 10
=1 f E =— — ~ 0,
@ 1711{1_‘1;1 1 nﬂmpl 100 < (11) 0.3504

11



and

I + 518 631 _@ 00628
Tfiipigwp" 100 TT000 0T T 2@—a)

We see that condition (Cjy) is satisfied and therefore all solutions oscillate.
Observe, however, that

o
0.963 <1-— Sk 0.9693,

0.963 < 1 — a!® ~ 0.9999,

and

963
A = limsup Z pg— +——0998<1
noco 1000

Therefore none of the conditions (Cs), (C7) and (C3) is satisfied.
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